博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
pycharm 配置 anaconda ,以及anaconda的使用
阅读量:7099 次
发布时间:2019-06-28

本文共 2127 字,大约阅读时间需要 7 分钟。

在学习推荐系统、机器学习、数据挖掘时,python是非常强大的工具,也有很多很强大的模块,但是模块的安装却是一件令人头疼的事情。

现在有个工具——anaconda,他已经帮我们集成好了很多工具了!anaconda里面集成了很多关于python科学计算的第三方库,主要是安装方便,而python是一个编译器,如果不使用anaconda,那么安装起来会比较痛苦,各个库之间的依赖性就很难连接的很好。

在windows中,pycharm是一个比较好python编辑器,所以如果能把pycharm 和 anaconda结合起来,岂不是美哉!

1.下载安装anaconda 

anaconda,注意对应自己想要安装的python版本就行了。

这里还要注意一个问题:因为anaconda是自带Python的,所以不需要自己再去下载安装Python了,当然,如果你已经安装了Python也不要紧,不会发生冲突的!

2.下载安装pycharm 

建议使用这个编辑器吧,个人感觉还是很好用的。如果你是已经安装了pycharm了,那么可以直接跳到下一步。 
它会自动找到你安装的python,安装时按提示来就是了。

3.在pycharm中配置anaconda的解释器 

具体做法是:File->Default settings->Default project->project interpreter

接着点击 project interpreter 的右边的小齿轮,选择 add local ,选择anaconda文件路径下的python.exe。接着pycharm会更新解释器,导入模块等,要稍等一点时间。

好了,到目前为止,anaconda在pycharm中的配置就基本完成了。难道我们就要满足使用conda中的那些包了吗?并不是,conda为我们带来了更多的东西,使我们在管理Python库的时候更加方便快捷!接下来就让我来详细为你解说一下吧!

1、配置国内源

让我们先来解决第一个问题,相信这个问题也是让很多人都感到头疼的,因为如果不进行配置的话,安装python库的时候默认是使用国外的源,这时候下载速度会很慢!国内的源下载速度要好很多。

pip源配置

大家比较熟悉的可能是使用pip来安装python的库(也有可能是easy install,不过我这里只讲pip的配置),所以就先来解决pip的源吧。

**注意配置环境**windows7 (64位),Python3.6

  1. 在windows文件管理器中,输入%APPDATA%,回车
  2. 接着会定位到一个新的目录,在这个目录中新建一个pip文件夹,然后在pip文件夹中新建个pip.ini文件
  3. 最后再新建的pip.ini文件中输入一下内容:
[global]index-url = https://pypi.tuna.tsinghua.edu.cn/simple

 

 

好了,到目前为止,pip源的配置就搞定了。

anaconda的源配置

在安装了anaconda后,我们也可以使用anaconda来进行Python库的安装,同样的也需要进行源的配置。(其实使用pip,anaconda来进行Python库的安装都是差不多,不过个人比较喜欢用anaconda)

这个配置方法就很简单了,你只需要在配置了anaconda的pycharm中的终端(Terminal)输入一下命令即可:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --set show_channel_urls yes

 

 

好了,源的配置到此就完成了。大家有兴趣可以去清华大学的看看,会有很多惊喜的。

2、conda的包管理

anaconda为我们提供方便的包管理命令——conda, 下面我们来看看都有哪些有用的命令吧!

# 查看已经安装的packagesconda list# 查看某个指定环境的已安装包conda list -n python34# 查找package信息conda search numpy# 安装scipyconda install scipy# 安装package # 如果不用-n指定环境名称,则被安装在当前活跃环境 conda install -n python34 numpy # 更新package conda update -n python34 numpy # 删除package conda remove -n python34 numpy

 

 

由于conda将conda、python等都视为package,因此,完全可以使用conda来管理conda和python的版本,例如

# 更新conda,保持conda最新conda update conda# 更新anacondaconda update anaconda# 更新pythonconda update python

转载于:https://www.cnblogs.com/heitaoq/p/8632315.html

你可能感兴趣的文章
NSURLSession不走代理方法的原因
查看>>
Java之JVM内存结构、Java内存模型、Java对象模型
查看>>
distribute-list分发列表详解
查看>>
关于Oracle归档进程的运行机制
查看>>
mail退信分析大全
查看>>
grep命令以及正则表达式,算数运算.
查看>>
九月细说"纯文本链接"
查看>>
IOPS 测试
查看>>
微信公众账号运营培训内部教程
查看>>
20170713L08-00老男孩Linux运维实战培训-DELL R710服务器RAID配置实战演示
查看>>
redis的批量删除
查看>>
php生成随机密码的几种方法
查看>>
我的友情链接
查看>>
在防火墙配置自定义服务
查看>>
vSphere 6.0 -Difference between vSphere 5.0, 5.1, 5.5 and vSphere 6.0
查看>>
Collect VMware support log&Performance Snapshot
查看>>
Enable PowerShell script execution policy
查看>>
aix 设置主机信任
查看>>
编程题:输入一串字符,程序会自动将大写字母转换为小写
查看>>
js赋值时特殊字符完美处理方案
查看>>